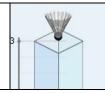


Na	me: Date:	Date:		
	Student Exploration: Free-Fall Labora	atory		
Vo	cabulary: acceleration, air resistance, free fall, terminal velocity, velocity,	vacuum		
Pri	ior Knowledge Questions (Do these BEFORE using the Gizmo.)			
1.	Suppose you dropped a feather and a hammer at the same time. Which ground first?	would hit the		
2.	Imagine repeating the experiment in an airless tube (vacuum). Would this result? Explain.	J		
Th obj	zmo Warm-up e Free-Fall Laboratory Gizmo™ allows you to measure the motion of an ject in free fall. On the CONTROLS pane check that the Shuttlecock is ected, the Initial height is 3 meters, and the Atmosphere is Air.	3		
1.	Click Play () to release the shuttlecock. How long does it take to			
	fall to the bottom?	2		
2.	Select the GRAPH tab. The box labeled <i>h</i> (m) should be checked, displaying a graph of height vs. time. What does this graph show?	1		
3.	Turn on the v (m/s) box to see a graph of velocity vs. time. Velocity is the speed and direction of the object. Because the object is falling downward, its velocity is negative.	0		
	Does the velocity stay constant as the object drops?	Time (s): 0.00		
4.	Turn on the <i>a</i> (m/s/s) box to see a graph of acceleration vs. time. Accele which the velocity changes over time. What does this graph show?	eration is the rate at		



Activity A:

Falling objects

Get the Gizmo ready:

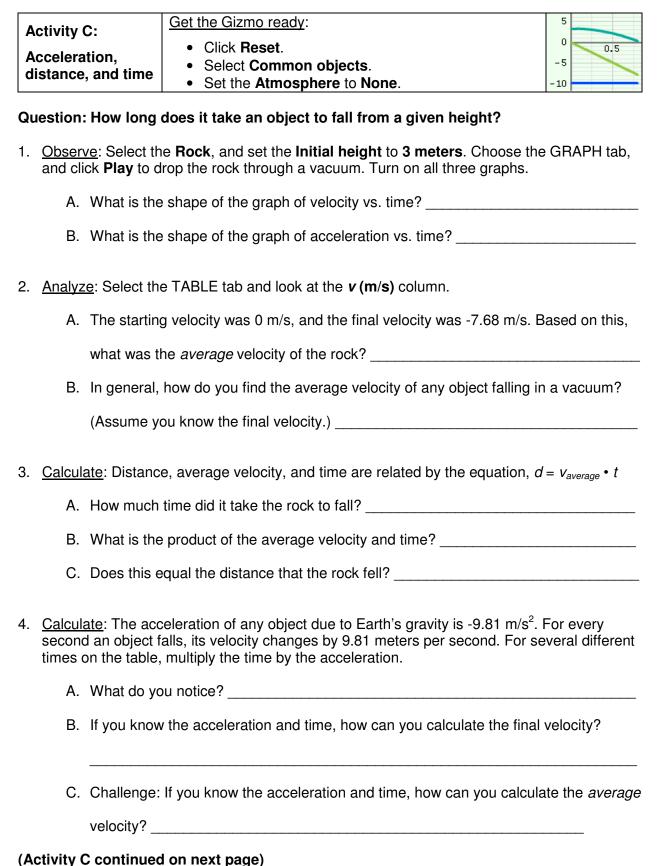
- Click Reset ().Select the CONTROLS tab.

Question: What factors affect how quickly an object falls?

1.	Observe: Drop each item through Air from a height of 3 meters. Record how long it takes to
	fall below. For the tennis ball, try to click Pause () when it hits the ground.

Shuttlecock	Cotton ball	Tennis ball	Rock	Pebble	

2.	Form a hypothesis: Why do some objects fall faster than others?						
3.	<u>Predict</u> : A vacuum has no air. How do you think the results will change if the objects fall through a vacuum?						
4.	. Experiment: On the Atmosphere menu, select None . Drop each item again, and record the results below.						
	Shuttlecock	Cotton ball	Tennis ball	Rock	Pebble		
5.	Analyze: What hap	opened when objec	cts fell through a va	acuum?			
6.	. <u>Draw conclusions</u> : Objects falling through air are slowed by the force of air resistance . Which objects were slowed the most by air resistance? Why do you think this is so?						



	Get the Gizmo ready:	2	
Activity B: Terminal velocity	 Click Reset. Set the Initial height to 12 meters. Set the Atmosphere to Air. 	0	

Question: How	does air	resistance	affect falling	objects?
----------------------	----------	------------	----------------	----------

1.	Observe: Select the Shuttlecock . Choose the BAR CHART tab, and click Play . What do you notice about the velocity and acceleration of the shuttlecock?					
			ir for a long time, t	they will eventually s	stop accelerati	ng. Their
2.	2. Form hypothesis: How will an object's size and mass affect its terminal velocity?					?
}.	to 100 meters For each com	and the air de bination of ma e object. Use t	ensity (p) to 1.3 kg ass and radius in	Stab, select Manua g/m ³ , close to actual the charts below, fi ab to find the termin	I air density at nd the termina	sea level. I velocity
	Mass	Radius	V _{terminal}	Mass	Radius	V _{terminal}
	1.0 g	3.0 cm		10.0 g	2.0 cm	
	10.0 g	3.0 cm		10.0 g	5.0 cm	
	50.0 g	3.0 cm		10.0 g	10.0 cm	
l .	A. What	was the effect	of increasing mas	us affect terminal vess?		
	Apply: If you v	wanted to use	a dovice to slow	value fall subat propa	ution abouted it	

Activity o continued on next page,

Activity C (continued from previous page)

5.	Make a rule: So far you have figured out two rules that relate time, acceleration, average velocity, and distance. Review these rules now.					
A. How do you find average velocity ($v_{average}$) from acceleration (a) and time (t)?						
B. How do you find distance (d) from average velocity ($v_{average}$) and time (t)?						
	C.	Now put the two equations together. Substitute your result in equation A for the ($v_{average}$) term in equation B. Your final equation should only have d , a , and t terms.				
6.		Use your rule to solve the following problems. Check your answers with the Gizmo. e that each fall takes place in a vacuum with an acceleration of -9.81 m/s².				
	A.	A rock falls for 1.43 seconds. How far did it fall?				
	B.	How long will it take for a rock to fall 12 meters?				
	C.	A rock falls for 4 seconds. How far did it fall?				
	D.	A rock falls for 3 seconds. What was its velocity when it hit the ground?				
	E.	How long will it take for a rock to fall 50 meters?				

